Генетическая уникальность: учёные обнаружили различие ряда белков днк человека и животных

Немного о РНК

Проект «Геном человека» показал, что молекулы РНК также важны для жизни, как и ДНК. Внутри клеток существует множество РНК (рис. 2). Изначально РНК подразделяются на некодирующие РНК (нкРНК), которые не транслируются в белки, и кодирующие РНК (мРНК), служащие матрицей для синтеза полипептидных цепей белка. Некодирующие РНК имеют более сложную классификацию. Они бывают инфраструктурными и регуляторными. Инфраструктурные РНК представлены рибосомными РНК (рРНК) и транспортными РНК (тРНК). Молекулы рРНК синтезируются в ядрышке и составляют основу рибосомы, а также кодируют белки субъединиц рибосомы. После того, как рРНК полностью собраны, они переходят в цитоплазму, где в качестве ключевых регуляторов трансляции, участвуют в чтении кода мРНК. Последовательность из трех азотистых оснований в мРНК указывает на включение определенной аминокислоты в последовательность белка. Молекулы тРНК, приносят указанные аминокислоты на рибосомы, где синтезируется белок.

Дополнительно о РНК читайте в статьях «Биомолекулы»: «Обо всех РНК на свете, больших и малых», «Кодирующие некодирующие РНК» и «Власть колец: всемогущие кольцевые РНК» .

Рисунок 2. Виды РНК

рисунок автора статьи

Регуляторные нкРНК очень широко представлены в организме, классифицируются в зависимости от размера и выполняют ряд важных функций (табл. 1).

Таблица 1. Некодирующие регуляторные РНК
Название Обозначение Длина Функции
Длинные некодирующие РНК днкРНК, lncRNA 200 нуклеотидов 1. Регулируют избирательное метилирование ДНК, направляя ДНК-метилтрансферазу
2. Руководят избирательной посадкой репрессорных комплексов polycomb
Малые РНК Малые ядерные РНК мяРНК, snRNA 150 нуклеотидов 1. Участвуют в сплайсинге
2. Регулируют активность факторов транскрипции
3. Поддерживают целостность теломер
Малые ядрышковые РНК мякРНК, snoRNA 60–300 нуклеотидов 1. Участвуют в химической модификации рРНК, тРНК и мяРНК
2. Возможно, участвуют в стабилизации структуры рРНК и защите от действия гидролаз
Малые интерферирующие РНК миРНК, siRNA 21–22 нуклеотидов 1. Осуществляют антивирусную иммунную защиту
2. Подавляют активность собственных генов
Микро-РНК мкРНК, miRNA 18–25 нуклеотидов Подавляют трансляцию путем РНК-интерференции
Антисмысловые РНК asRNA 1. Короткие: менее 200 нуклеотидов
2. Длинные: более 200 нуклеотидов
Блокируют трансляцию, образуя гибриды с мРНК
РНК, связанные с белками Piwi piRNA, piwiRNA 26–32 нуклеотидов Их также называют «стражами генома», они подавляют активность мобильных генетических элементов во время эмбриогенеза

Компоненты нуклеотида

В состав нуклеотида входят такие компоненты, как азотистая основа, сахар и один или несколько фосфатов. Стоит рассмотреть каждый их них более подробно:

  • Азотистое основание. Это может быть аденин, тимин, цитозин, гуанин, урацил. Они не являются кислотами, каждый из них содержит несколько атомов азота. Нуклеотиды могут соединяться друг с другом: цитозин всегда составляет пару с гуанином и адениновые пары с тимином в ДНК или урацил в РНК.
  • Следующим основным компонентом нуклеотида является сахар. Существует много видов сахара, но здесь важны два: рибоза — это сахар, который вы увидите в РНК. Существует версия рибозы, у которой отсутствует атом кислорода, и он будет называться сахарной дезоксирибозой. Это тип сахара в ДНК-нуклеотидах. Помните, что ДНК — это дезоксирибонуклеиновая кислота.
  • Последним основным фрагментом нуклеотида является фосфат. Фосфат представляет собой атом фосфора, связанный с четырьмя атомами кислорода. Связи между фосфатами являются очень высокой энергией и действуют как форма хранения энергии. Когда связь сломана, полученная энергия может быть использована для выполнения работы.

Особенности российских стандартов бухучета

Российский бухучет имеет ряд ключевых отличий, в сравнении с международными стандартами бухучета. Подробнее о МСБУ читайте в статье «Национальные и международные стандарты бухгалтерского учета».

Определим особенности РСБУ:

  1. Бухгалтерский учет ведется в валюте страны, то есть в рублях. При совершении хозяйственных операций в иностранной валюте следует конвертировать их в рубли.
  2. Составление первичной документации, заполнение регистрационных журналов или журналов-ордеров, а также составление бухотчетности осуществляется исключительно на русском языке.
  3. При сотрудничестве с иностранными инвесторами, кредиторами и прочими бизнес-партнерами осуществляется построчный перевод отчетных форм, регистров и первичной документации.
  4. Ведение бухучета осуществляется в соответствии с Единым планом счетов. Операции отражаются методом двойной записи. То есть сумма операции записывается одновременно по дебету одного счета и кредиту второго.
  5. Для РСБУ отчетным периодом является календарный год, однако предусмотрены исключения для вновь созданных экономических субъектов. Для некоторых категорий организаций установлены промежуточные периоды для формирования и предоставления бухотчетности.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1.  В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2.  Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  •  Х хромосома, которая встречается у женщин и у мужчин.
  •  Y хромосома, встречающаяся только у мужчин.
  •  В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

Как и для чего делают ДНК тест?

Так как ДНК содержится в каждой клетке нашего тела, изучая генетический материал – кровь, кожу, волосы, слюну и т.п. – с помощью принципов микробиологии – ученые могут узнать владельца конкретной ДНК. Однако для получения точных результатов специалисты советуют сдать кровь из вены. Сегодня анализ ДНК позволяет определить наследственную предрасположенность к разным заболеваниям, которыми страдали или страдают родственники человека. Одним из таких заболеваний является шизофрения – в своей предыдущей статье я подробно рассказывала о том, почему эту болезнь так сложно лечить и изучать.

Более того, проанализировав ДНК специалисты могут рассказать о том, какие заболевания могут возникнуть у человека в будущем, определить индивидуальную непереносимость лекарств, склонность к наркомании и алкоголизму и многое другое.

ДНК есть у всех живых организмов.

Наиболее распространенным тестом ДНК является метод полимеразной цепной реакции или ПЦР. На сегодняшний день это один из новейших и наиболее точных способов диагностики. Несмотря на то, что этот метод до сих пор считается экспериментальным, он широко и успешно применяется в медицине. Так, большинство тестов на наличие/отсутствие в организме нового коронавируса SARS-CoV-2, которые проводятся во всем мире, являются именно ПЦР-тесты. Метод ПЦР в 1993 году разработал ученый Кэри Муллис, который получил за свое открытие Нобелевскую премию. Суть метода заключается в применении особых ферментов, которые много раз копируют фрагменты ДНК возбудителей болезни (как, например, с коронавирусом) которые можно обнаружить в пробах генетического материала, например в крови. Затем специалисты сверяют полученные фрагменты с базой данной, что позволяет выявить тип возбудителя болезни и его количество в организме.

Так выглядит амплификатор

Однако выявление и определение склонности к заболеваниям не является единственной областью, в которой прибегают к использованию тестов ДНК. Так, появление ДНК-тестов – как в свое время дактилоскопия (метод определения отпечатков пальцев) – изменило криминалистику. Благодаря анализу ДНК следователи имеют возможность собрать генетический материал преступника и поймать его. Но самое популярное использование ДНК-тестов – определение отцовства. Возможно дело в том, что этот анализ позволяет получить практически 100% результат. Недавно мой коллега Николай Хижняк в своей статье подробно рассказал о будущих возможностях исследования ДНК, рекомендую к прочтению.

Подводя черту отмечу, что сегодня загадка кода ДНК еще не раскрыта. Мы стоим в самом начале познания, что же это такое на самом деле? Приоткрыв небольшую щелочку двери мы можем только догадываться о том, какие перспективы в будущем для человека может открыть понимание что такое ДНК и как мы можем использовать эти знания!

Нуклеиновые кислоты: решение задач

Задача 1.

В молекуле ДНК содержится 17% аденина. Определите, сколько (в %) в этой молекуле содержится других оснований.

Решение:

По первому правилу Чаргаффа А=Т, Г=Ц. В задаче дано А=17%, значит и тимина 17%. Всего тимина и аденина 17+17=34%. Оставшиеся 66% делятся на гуанин и цитидин поровну. Г=33% и Ц=33%.

Ответ: в этой молекуле ДНК содержится:

Тимидина — 17%;

Гуанина — 33%;

Цитидина — 33%.

Задача 2.

Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ ЦГЦ ТЦА ААА ТЦГ …

Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении белка удаление из гена четвёртого нуклеотида?

Генетический код

Решение:

Используя принцип комплементарности (в ДНК: А=Т, Г=Ц) соединения оснований водородными связями и таблицу генетического кода:

Цепь ДНК ЦГГ ЦГЦ ТЦА ААА ТЦГ
иРНК ГЦЦ ГЦГ УГУ УУУ АГЦ
Цепь белка из аминркислот Ала Ала Сер Фен Сер

При удалении из гена четвёртого нуклеотида – Ц, произойдут заметные изменения – уменьшится количество и состав аминокислот в белке.

ДНК ЦГГ ГЦТ ЦАА ААТ ЦГ
иРНК ГЦЦ ЦГА ГУУ УУА ГЦ
белок Ала Арг Вал Лей

Задача 3.

Какую длину имеет участок ДНК, кодирующий синтез инсулина, который содержит 51 аминокислоту в двух цепях, если один нуклеотид занимает 3,4 А° (ангстрема) цепи ДНК? 1 А°=0,1 нм (нанометра)=0,0001 мкм (микрометра)=0,000 0001 мм=0,000 000 000 01 м.

Решение

1) 51Х3=153 (нуклеотида) – так как каждая аминокислота кодируется тремя нуклеотидами.

2) 153 Х3,4 = 520,2 (А°)

Ответ: участок ДНК равен 520,2 А°

Описание ↑

Дезоксирибонуклеиновая кислота – хранилище генетической информации. Основное назначение нуклеиновой кислоты – это сохранение данных о белках и РНК. В конце XIX века основным носителем информации считался белок. Исследования, проводимые в средине XX века, выявили, что не белок, а именно нуклеиновая кислота является основным вместилищем генетической информации.

Первым доказательством важной роли дезоксирибонуклеиновой кислоты в наследственности стал проведенный в 1944 году эксперимент О. Эвери, М

Маккарти и К. Маклауда. Опытным путем выяснилось, что ДНК вызывает метаморфозы бактерий. Проведенный в 1952 году американскими генетиками А. Д. Херши и М. К. Чейз опыт, показал, что именно ДНК хранитель генетической информация. Этот факт расширил суть понятия нуклеиновой кислоты. Эти опыты показали: ДНК имеет огромное значение при восстановлении, хранении и сохранении структуры генотипа. В 1953 году группа ученых делает сенсационное открытие, за которое они получают Нобелевскую премию. Им удается разгадать структуру дезоксирибонуклеиновой кислоты. Дезоксирибонуклеиновая кислота связана с изменчивостью, наследственностью человека. Во время репликации клетка делится на две идентичные клетки. Это означает, что молекула ДНК имеет огромное значение в процессе эволюции живых организмов. При этом организм приспосабливается к различным условиям окружающей среды и сохраняет лучшие гены. Все изменения, происходящие с живыми организмами на протяжении веков, случились благодаря ДНК.

Использование в медицине

Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:

  1.      Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
  2.      Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
  3.      Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
  4.      Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
  5.      Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.

И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю — победить болезни и саму смерть.

Врожденные уязвимости

Способность человеческой ДНК накапливать целые пласты изменений из поколения в поколение далеко не всегда идёт ему на пользу. Существует ни мало способов нарушить целостность генов:

  •  Радиация. По всюду на земле имеется некоторый радиоактивный фон, который принято считать либо естественным, либо в пределах допустимой нормы. Но, норма радиоактивного фона это лишь микродозы облучения, которое способно выбивать участки генов из цепочки ДНК. Каким бы слабым и не насыщенным это облучение не было, оно постоянно атакует наши клетки в течении всей жизни.
  •  РНК-вирусы. Вирусы способные проникать в ядро клетки и вписывать своё тело в хромосомы. Возможно ответственные за многие наследственные заболевания.
  •  Генетические яды: алкоголь, наркотические и отравляющие вещества.
  •  Некоторые виды особо опасных заболеваний.

Современные технологии генной инженерии позволяют проводить эксперименты в области создания генетического оружия, которое в теории будет поражать только представителей определённой народности. Вопросы о гуманности такого оружия уже подымались на мировом уровне и официально разработки в этом направлении были запрещены.

Но самая идея создания такого оружия так же фанатична, как и идеи расового превосходства. Остаётся надеяться, что подобных экспериментов никто на всё земле не проводит. Мы ещё слишком мало знаем о микромире и его законах в основе всего живого. И наши, довольно варварские методы вмешательства в геном живых существ, может порождать целый букет непрогнозируемых последствий. С очень высокой вероятностью, искусственный вирус быстро начнёт мутировать, вырвется из-под контроля, и начнёт убивать всё живое, а не только представителей определенной гаплогруппы.

Открытый вопрос

Учёные разработали компьютерную программу, способную сравнивать транскрипционные факторы у различных видов по составу аминокислот и таким образом различать похожие белки.

Полученные результаты противоречат данным более ранних работ, в которых утверждалось, что почти все транскрипционные факторы человека и, например, мух из рода дрозофил связывают одни и те же фрагменты кода ДНК.

Также по теме

Дальний родственник из миоцена: учёные обнаружили ранее неизвестный вид древних обезьян

Американские учёные выявили новый вид обезьян, обитавший на Земле 22 млн лет назад. Открытие было сделано благодаря обнаруженным в…

«До сих пор сохранилось представление о том, что транскрипционные факторы людей и плодовых мух связывают почти идентичные структурные элементы (мотивы). И хотя известно множество примеров, где эти белки обладают функциональной консервативностью, данная гипотеза ещё далека от признания», — говорит руководитель лаборатории, в которой было проведено исследование, профессор кафедры молекулярной генетики Университета Торонто Тимоти Хьюз.

Для канадских учёных остаётся открытым вопрос, за какие функции отвечают уникальные для человека гены. В изучаемых ими белках могут быть сокрыты особенности физиологии и анатомии человека — нашей иммунной системы и мозга, которые являются наиболее сложными среди животных. Также исследователи не исключают, что эти гены могут отвечать за анатомические различия между полами.

«В области генетики человека молекулярная основа полового диморфизма почти никем не исследуется

Но ведь речь идёт о различиях, которые видны людям друг в друге и привлекают их внимание. У меня есть соблазн посвятить работе над данной темой оставшуюся половину своей карьеры, если только я смогу разобраться, как мне этого добиться», — говорит профессор Хьюз

Принципы проведения качественного анализа на ВГC

В целом, к пациенту не имеется особых требований по подготовке к сдаче анализов. Все, что нужно сделать – сдать небольшое количество крови. Строго рекомендуется делать это натощак: в этом случае результаты диагностики будут более точными.

Стоит знать, что качественный анализ по методу ПЦР обычно назначается не сразу. Его рекомендуют проводить в следующих случаях:

  • Обнаружение антител вируса гепатита C в крови пациента.
  • Был обнаружен ВГC, но антитела в крови не имеются.
  • При контроле проводимой противовирусной терапии.

В первых двух случаях качественный анализ назначается после сероконверсии. Если антител нет, но вирус обнаружен, нужно понять: какой именно генотип ВГC присутствует, и почему иммунная система не реагирует. Если есть антитела, то анализ позволяет разобраться: нужно ли лечение, или организм самостоятельно поборол болезнь.

Наконец, при контроле противовирусной терапии анализ делается для проверки эффективности лечения. В частности, метод ПЦР позволит понять, как препараты воздействуют на уже обнаруженный ВГC. Если эффект слабый, то на основе анализов врач решает, нужно ли менять лечение. Стоит запомнить: при контроле противовирусной терапии требуется особо чувствительное оборудование, способное обнаружить РНК гепатита C даже в самой низкой концентрации.

ДНК (дезоксирибонуклеиновая кислота)

ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.

ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.

Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.

Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.

Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.

Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.

Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.

В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Таким образом,

  • ТИМИН (Т) комплементарен АДЕНИНУ (А),
  • ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Репликация ДНК

Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.

Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.

После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.

После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.

Таким образом, сохраняется и передается новому поколению исходная структура ДНК.

Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.

Видеофильм «ДНК. Код Жизни»

Рубрики: Нуклеиновые кислоты

Анализ на антитела (ИФА)

Обнаружение специфических белков, убивающих НСV, свидетельствует об иммунном ответе организма. ИФА определяет антитела, не только к гепатиту. Этим методом диагностируются другие виды патологий, инфекционных заболеваний.

Исследование проводится при подозрении на заражение, оно подтверждает или ставит под сомнение отрицательный результат ПЦР. Антитела – своеобразная иммунная память, они остаются у здорового человека до трех лет, реже – на протяжении всей жизни (устойчивая защита к вирусу).

Если у пациента антител нет, это говорит о невосприимчивости организма к возбудителю, он не распознается как чужеродный. Если проверяют пациента, не болевшего гепатитом, возможен результат «не обнаружено» на РНК и антитела.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector