Избирательная проницаемость
Содержание:
- Поверхностный комплекс клетки
- Что такое клеточная мембрана
- Сравнительная характеристика клеток эукариот и прокариот
- Одномембранные органоиды клетки — описание
- Аппарат Гольджи
- Мембраны животной клетки
- Физико-химические свойства мембран
- Эндоплазматическая сеть
- Ядро
- Что такое мембрана в биологии?
- Функции
- Функции клеточной мембраны растения
- Что такое клеточная мембрана
- Функции
- 1.3. Состав и строение мембран.
- функции
- Аппарат Гольджи
- Какую роль выполняет клеточная оболочка?
Поверхностный комплекс клетки
Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию.
Поверхностый аппарат животных клеток дополнительно включает гликокаликс. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы углеводов. Гликокаликс выполняет рецепторную и маркерную функции.
У большинства грибов и растений есть клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции.
Рисунок 3. Клеточная мембрана.
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов;
- гликолипидов;
- холестерола;
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение;
- каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
- холестерол придает мембране упругость и жесткость;
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Сравнительная характеристика клеток эукариот и прокариот
Вы можете увидеть сравнение по признакам прокариот и эукариот в таблице.
Признак | Прокариоты | Эукариоты |
Размеры клеток | Средний диаметр 0,5 —10 мкм | Средний диаметр 10 — 100 мкм |
Организация генетического материала | ||
Форма, количество и расположение молекул ДНК | Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме | Обычно есть несколько линейных молекул ДНК — хромосом, локализованных в ядре. В интерфазном ядре (вне деления) хромосомы представляют собой хроматин: ДНК компактизируется в комплексе с белками |
Деление | ||
Тип деления | Простое бинарное деление. Веретено деления не образуется | Мейоз или митоз |
Органеллы | ||
Наличие мембранных органелл | Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки | Имеется большое количество одномембранных и двумембранных органелл |
Одномембранные органоиды клетки — описание
Функционирование клетки обусловлено набором органелл, которые располагаются в ее гиалоплазме. Поскольку каждая из них имеет строго определенные функции, они различаются по строению, форме, наличию структурных элементов. Особенно важны те клетки, которые представляют одноклеточный организм. Существование органелл обуславливается элементом, ограничивающим внутреннее содержание клетки от внешней среды. Это — клеточная мембрана. Каждый органоид имеет свою оболочку, по особенностям которой определяют принадлежность к одно-, дву- и безмембранным вариантам.
К одномембранным органоидам относятся:
- эндоплазматическая сеть (ЭПС);
- комплекс (аппарат) Гольджи;
- лизосомы;
- вакуоли;
- секреторные пузырьки и пероксисомы.
Каждая из этих структур несет свою функциональную нагрузку, имеет особенности строения. Их объединяет закономерность строения мембраны.
Эволюционная теория происхождения этих элементов заключается в отграничении части клеточного содержания путем впячивания клеточной мембраны. После того, как впячиваемая часть замкнулась, произошло ее отпочкование. При этом осталась нерушимой взаимосвязь между образовавшимися пузырьками, благодаря которой они «обмениваются» своим содержимым. Существует общее название для такой системы — вакуолярная. В то же время каждый элемент имеет свое название.
Примечание
Оболочка главного клеточного элемента — ядра — с учетом механизма образования также является звеном системы вакуолей — цистерной ЭПС. Однако она имеет две мембраны. На наружной можно при цитологических исследованиях обнаружить рибосомы (сходство с ЭПС), на внутренней — элементы, взаимодействующие с ДНК-аппаратом.
В справочной литературе можно встретить утверждение, что одномембранными структурами являются органы движения клеток — жгутики и реснички.
Аппарат Гольджи
Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. То есть это органоид, который упаковывает синтезированные в клетке вещества и побочные продукты для дальнейшей секреции или расщепления.
Рисунок 5. Аппарат Гольджи
Функции аппарата Гольджи
- Модифицирует продукты клетки.
- Производит определенные макромолекулы.
- Сортирует и упаковывает материалы в транспортные пузырьки.
Пузырьки
Небольшие мембранно-замкнутые мешковидные пузырьки образуются в большом количестве во множестве типов, как сами по себе, так и в почках. Есть много типов, но два основных: лизосомы и пероксисомы.
Лизосомы
Лизосомы, которые исходят из органов Гольджи, принимают участие во внутриклеточном пищеварении. Они содержат мощные ферменты, которые могут расщеплять углеводы , белки, нуклеиновые кислоты и липиды. Везикулы внутри лейкоцитов или амеб доставляют лизосомы к поглощенным бактериям, клеточным частям и другому мусору. Ферменты работают лучше всего в кислой среде внутри лизосомы.
Лизосомы разрушают изношенные части клеток или молекулы, чтобы их можно было использовать для создания новых клеточных структур. Некоторые типы клеток могут поглощать другие клетки путем фагоцитоза; это формирует пищевую вакуоль. Лизосома сливается с пищей вакуолизирует и переваривает молекулы. Лизосомы также используют ферменты для рециркуляции собственных органелл и макромолекул клетки, процесс, называемый аутофагией.
Пероксисомы
У растений и животных пузырьки, называемые пероксисомами, образуют и делятся сами по себе, поэтому они не являются частью эндомембранной системы.
Пероксисомы содержат ферменты, которые переваривают жирные кислоты и аминокислоты. Они также расщепляют перекись водорода, токсичный побочный продукт метаболизма жирных кислот.
Ферменты пероксисом превращают перекись водорода в воду и кислород или используют ее в реакциях, которые расщепляют алкоголь и другие токсины.
Мембраны животной клетки
Таковы функции плазматической мембраны в клетке, где она играет важную роль для каждой органеллы. Причем ряд функций следует объединить в одну – в защитную. В частности барьерная и механическая функции объединены в защитную. Более того, функции плазматической мембраны в растительной клетке практически идентичны таковым в животной и бактериальной.
Животная клетка является наиболее сложной и высокодифференцированной. Здесь располагается гораздо больше интегральных, полуинтегральных и поверхностных белков. В целом у многоклеточных организмов структура мембраны всегда сложнее, чем у одноклеточных. И то, какие функции выполняет плазматическая мембрана конкретной клетки, определяет, будет ли она отнесена к эпителиальной, соединительной или возбудимой ткани.
Физико-химические свойства мембран
При обычных (свойственных организму) условиях физическое состояние мембран — жидкое. Однако в их молекулярной организации есть порядок (представлен выше), поэтому правильно называть ее жидкокристаллическим, а состояние этой кристаллической структуры — смектическое.
Свойства:
- чувствительность к внешним условиям;
- асимметричность;
- текучесть;
- изменчивость;
- самоорганизация;
- замкнутость;
- пластичность.
Особенности этой организации, свойственные цитолеммам, позволяют им перейти и в другое состояние (например, в гель при понижении температуры).
Именно поэтому при длительном изменении внешних условий в мембранах происходит изменение и химического состава — они проходят период адаптации, что не всегда благотворно сказывается на состоянии клетки.
При химическом анализе установлено, что все элементы, входящие в состав клеточной оболочки по количеству вариативны. Например, в эритроцитах количество белковых молекул в 2,5 раза больше, чем липидных, а в миелиновой мембране — наоборот.
Эндоплазматическая сеть
Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.
Строение эндоплазматической сети
Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.
Ядро
Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.
Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.
Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.
Строение ядра
Что такое мембрана в биологии?
Говоря простым языком, это оболочка. Однако она не всегда полностью непроницаемая. Почти всегда допускается транспорт определенных веществ сквозь мембрану.
В цитологии мембраны можно разделить на два основных типа. Первый – это плазматическая мембрана, которая покрывает клетку. Второй – это мембраны органоидов. Существуют органеллы, которые обладают одной или двумя мембранами. К одномембранным относятся комплекс Гольджи, эндоплазматический ретикулум, вакуоли, лизосомы. К двумембранным принадлежат пластиды и митохондрии.
Также мембраны могут быть и внутри органоидов. Обычно это производные внутренней мембраны двумембранных органоидов.
Функции
- Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
- Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембрану обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии так как происходит перенос веществ из области высокой концентрации в область низкой, то есть против градиента концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит перенос веществ из области низкой концентрации в область высокой, то есть по градиенту концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
- Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
- Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)
Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами
Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»
Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Функции клеточной мембраны растения
Клеточная мембрана растения выполняет следующие функции:
- Транспортировочная. Способствует попаданию внутрь необходимых питательных веществ. Регулирует в целом обмен клетки с внешней средой.
- Матрикс. Отвечает за расположение других внутренних органоидов, фиксирует их положение и способствует их взаимодействию между собой.
- Регуляция энергетического обмена. Обеспечивает протекание различных процессов, от фотосинтеза до дыхания клетки. Данные процессы были бы невозможны без белковых каналов плазмалеммы.
- Выработка ферментов. Ферменты вырабатываются именно в белковых слоях плазмалемм некоторых клеток.
У животной и растительной клетки строение клеточной мембраны идентично, а функции, которые они выполняют, различные. Это можно объяснить тем, что у растений присутствуют клеточная мембрана и клеточная стенка. Данная стенка представляет собой дополнительный органоид, покрывающий цитолемму снаружи, и, как следствие, принимающий на себя часть ее функций.
Функции, принятые на себя клеточной стенкой:
- защитная. Данная стенка является прочной, что способствует предотвращению механических повреждений. Также она выборочно пропускает внутрь молекулы, не допуская попадания тех из них, которые являются болезнетворными;
- формирование запасов. Некоторые полезные вещества откладываются в стенке для использования в случае наступления неблагоприятных условий, а также для обеспечения роста и развития;
- регулирует внутреннее давление. Выполнение этой функции напрямую связано с прочностью организма;
- взаимодействие с другими клетками. Наличие специальных каналов в стенке позволяет совершать обмен информацией о состоянии внешней среды.
Рассматриваемая стенка берет на себя ряд функций, выполняемых в организмах животных цитолеммой. Именно из-за этого строение мембраны растений и некоторых других видов может отличаться.
Значение цитолеммы для организма
Несмотря на то, что у растений множество функций были делегированы от цитолеммы к другому органоиду, она по-прежнему играет очень большую роль в жизнедеятельности организма.
Именно с помощью плазмалеммы происходят основные процессы обмена, выраженные следующими реакциями:
- Экзоцитоз. Выделение наружу веществ, которые уже были переработаны ранее, либо были сформированы специально для попадания во внешнюю среду (например, гормоны или ферменты). Для их выведения на внутренней поверхности цитолеммы образуются специальные пузырьки, которые проходят сквозь ряды липидов, а затем их содержимое выделяется наружу.
- Фагоцитоз. Поглощение цитолеммой частиц некоторых питательных веществ и дальнейшая их обработка. За этот процесс ответственны специальные клетки, называемые фагоцитами, которые прикреплены к цитолемме.
- Пиноцитоз. Поглощение плазмалеммой молекул жидкости, которые находятся в непосредственной близости от нее. Этому служат специальные жгутики, находящиеся на поверхности плазмалеммы, благодаря которым жидкость, попадающая на поверхность, принимает форму капли, и может быть захвачена.
Благодаря наличию ионных каналов внутрь через цитолемму попадает ряд необходимых для жизни веществ
Значение этих каналов трудно переоценить, об их важности говорит, как минимум, тот факт, что, если каналы теряют тонус и перестают корректно выполнять свои функции, у клетки начинается кислородное голодание, из-за чего она, спустя некоторое время, может переродиться в раковую
В растительной клетке за процессы питания отвечает не только цитолемма, но и клеточная стенка, поэтому так важно, чтобы комбинация этих органоидов была в надлежащем состоянии, от этого напрямую зависит жизнь. Как вы считаете, все ли функции клеточной мембраны были указаны в материале? Быть может среди вас есть самые внимательные, которые знают еще одну малозначительную функцию? Делитесь своими наблюдениями в ! А также смотрите видео о веществах клеточной стенки растения
Как вы считаете, все ли функции клеточной мембраны были указаны в материале? Быть может среди вас есть самые внимательные, которые знают еще одну малозначительную функцию? Делитесь своими наблюдениями в ! А также смотрите видео о веществах клеточной стенки растения.
Что такое клеточная мембрана
Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.
Структура клеточной мембраны
Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.
Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.
Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1.
Рисунок 1: Подробная схема клеточной мембраны
Состав клеточной мембраны
Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.
Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.
Функция клеточной мембраны
Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.
Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.
Функции
В зависимости от расположения и особенностей все мембраны выполняют собственные функции, тем не менее по выполняемой работе они сходны.
Роль плазмалеммы:
- Барьерная. Эта функция является основной и выполняется всеми видами клеточных мембран. Особенно она важна для наружной оболочки: благодаря ей клетка поддерживает форму, гомеостаз, стабильность внутреннего содержимого, целостность.
- Транспортная. Второе важнейшее назначение — активный и пассивный перенос веществ изнутри клетки в наружную среду и обратно. Механизмы этого переноса самые разнообразные, транспорт может происходить как через каналы, образуемые пронизывающими молекулами белков, так и с помощью переносчиков. Также различают пассивное (по градиенту концентрации, например диффузия газов), и активное (против градиента, с затратой выработанной клеткой энергии).
- Рецепторная. Эта роль возложена на пронизывающие белки, которые особым образом связаны с углеводными цепочками (гликополисахаридами). Образовавшиеся таким образом рецепторы, которые по своему строению и являются гликопротеидами, образуют комплекс с гормонами, затем активируются катализаторы, и такая система запускает механизмы поступления или вывода различных веществ.
- Обмен информацией. Способность клетки контактировать оболочками, обмениваясь друг с другом информацией сродни рецепторным реакциям. Благодаря им происходит стимуляция роста или торможения и иные физиологические процессы. Такой контакт может быть механическим (простое или замковое смыкание оболочек) и при помощи специальных образований — синапсов. Передающиеся через синапсы сигналы могут быть как механическими, так и электрическими.
- Энергетическая. Плазмалемма митохондрий и пластид (хлоропластов) отвечает за синтез аденозинтрифосфорной кислоты — аккумулятора клеточной энергии.
Особо следует отметить эндо- и экзоцитоз. Вследствие этих мембранных механизмов в клетку могут поступать не только целые молекулы больших размеров, но и неизмененные, сторонние клетки. Примером эндоцитоза (обволакивания крупных частиц или капель жидкости, втягивание внутрь цитоплазмы и дальнейшая химическая дезактивация) может служить поглощение вредных и чужеродных молекул лейкоцитами.
Экзоцитоз — обратный транспорт. Благодаря ему ненужные, отработанные вещества окружаются плазмалеммами и выносятся наружу через поры.
Такое множество функций и разнообразие реакций, происходящих как внутри, так и снаружи плазмалеммы, возможно за счет их упорядоченного физико-химического строения.
1.3. Состав и строение мембран.
1.3.1.
Все
мембраны по своей организации и составу
обнаруживают ряд общих свойств. Они:
-
состоят
из липидов, белков и углеводов; -
являются
плоскими замкнутыми структурами; -
имеют
внутреннюю и внешнюю поверхности
(асимметричны); -
избирательно
проницаемы.
1.3.2.
Схема
строения биологической мембраны,
представлена на рисунке 1.3. Основу
мембраны составляет липидный
бислой
– двойной слой молекул липидов, которые
обладают свойством амфифильности
(содержат как гидрофильные, так и
гидрофобные функциональные группы). В
липидном бислое гидрофобные участки
молекул взаимодействуют между собой,
а гидрофильные участки обращены в
окружающую водную среду.
Мембранные
липиды выполняют роль растворителя
мембранных
белков,
создавая жидкую среду, в которой они
могут функционировать. По степени
влияния на структуру бислоя и по силе
взаимодействия с ним мембранные белки
делят на интегральные
и периферические.
Важнейшие особенности интегральных и
периферических белков представлены в
таблице 1.
Таблица
1.1
функции
Функция мембраны каждого типа клеток тесно связана с ее структурой. Тем не менее, они выполняют основные функции.
Биомембраны отвечают за разграничение клеточной среды. Точно так же внутри клетки есть мембранные отсеки.
Например, митохондрии и хлоропласты окружены мембранами, и эти структуры участвуют в биохимических реакциях, которые происходят в этих органеллах..
Мембраны регулируют прохождение материалов в клетку. Благодаря этому барьеру необходимые материалы могут поступать как пассивно, так и активно (при необходимости АТФ). Также нежелательные или токсичные материалы не попадают.
Мембраны поддерживают ионный состав клетки на соответствующих уровнях посредством процессов осмоса и диффузии. Вода может свободно перемещаться в зависимости от градиента концентрации. Соли и метаболиты имеют специфические транспортеры, а также регулируют клеточный pH.
Благодаря присутствию белков и каналов на поверхности мембраны, соседние клетки могут взаимодействовать и обмениваться материалами. Таким образом, клетки собираются вместе и ткани формируются.
Наконец, мембраны содержат значительное количество сигнальных белков и позволяют взаимодействовать с гормонами, нейротрансмиттерами и другими..
Аппарат Гольджи
Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.
Аппарат Гольджи
В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.
Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.
Какую роль выполняет клеточная оболочка?
Строение плазматической мембраны позволяет ей справляться с пятью функциями.
Первая и основная — ограничение цитоплазмы. Благодаря этому клетка обладает постоянной формой и размером. Выполнение данной функции обеспечивается за счет того, что плазматическая мембрана крепкая и эластичная.
Вторая роль — обеспечение межклеточных контактов. Благодаря своей эластичности плазматические мембраны животных клеток могут образовывать выросты и складки в местах их соединения.
Следующая функция клеточной оболочки — транспортная. Она обеспечивается за счет специальных белков. Благодаря им нужные вещества могут быть транспортированы в клетку, а ненужные — утилизироваться из нее.
Кроме того, плазматическая мембрана выполняет ферментативную функцию. Она также осуществляется благодаря белкам.
И последняя функция — сигнальная. Благодаря тому что белки под воздействием определенных условий могут изменять свою пространственную структуру, плазматическая мембрана может посылать клетки сигналы.
Теперь вы знаете все о мембранах: что такое мембрана в биологии, какими они бывают, как устроены плазматическая мембрана и мембраны органоидов, какие функции они выполняют.