Трагедия мужской хромосомы

Потенциальные проблемы на генном уровне

Проблем на уровне генов может быть несколько. И все они рассматриваются отдельно, ведь имеют разную клиническую картину. Ниже представлены только те патологии, которые современная медицина может успешно вылечить после того, как родился больной ребенок:

  1. Моносомия — патология, которая отличается отсутствием гомологичной хромосомы.
  2. Анэуплоидия — нарушается число отдельных единиц.
  3. Трисомия — когда в клетке присутствует лишняя хромосома (также есть патология тетрасомия, когда лишних хромосом две).
  4. Полиплоидия — количество гаплоидных наборов больше, чем диплоидных.

Эти показания считаются отклонением от нормы и их можно определить еще во время внутриутробного развития. Если существует возможного того, что ребенок родится с серьезными проблемами, врачи часто рекомендуют беременной женщине сделать аборт. В противном случае женщина обрекает себя на жизнь с инвалидом, которому будет необходимо дополнительное воспитание.

Генетика пола

     Генетический пол человека определяется одной из 23 пар хромосом — половыми хромосомами. У женщин имеются две идентичные половые хромосомы, называемые Х-хромосомами. Мужчины имеют одну Х-хромосому и вторую, меньшую по размерам, У-хромосому. При формировании половых клеток (гамет) парные хромосомы расходятся и попадают в разные гаметы. Поэтому все яйцеклетки получают по одной Х-хромосоме.  При образовании сперматозоидов половина их имеет Х-хромосому, а другая половина — У-хромосому. Таким образом, пол ребенка зависит от того, какой именно сперматозоид оплодотворит яйцеклетку. Оплодотворение сперматозоидом, содержащим Х-хромосому, ведет к образованию женской зиготы XX. Слияние сперматозоида, содержащего У-хромосому, с яйцеклеткой дает мужскую зиготу ХУ. 

    На окрашенных срезах клетки, находящейся в состоянии покоя, хромосомы неразличимы, видна лишь сеть из темных тяжей и зернышек, в совокупности называемых хроматином. Перед началом деления клеточного ядра эти тяжи уплотняются и образуют хромосомы. В этот период возможна половая дифференцировка клеток по набору хромосом (кариотипу). Однако этот метод не получил распространения в судебной медицине из-за своей сложности и трудоемкости. Только открытие Х- и У-хроматина в ядрах клеток, находящихся в покое, предопределило возможность определения пола на клеточном уровне сравнительно несложными методиками. 

Что такое XYY-синдром?

XYY–синдром (или также называемый как YY-синдром или Синдром Джейкобса), — это редкое хромосомное заболевание, которое поражает мужчин. Вызван синдром наличием дополнительной Y-хромосомы. Мужчины обычно имеют одну X и одну Y-хромосому. Тем не менее, люди с этим синдромом имеют одну Х и две Y-хромосомы.

Пострадавшие люди обычно очень высокие. Многие испытывают серьезные трудности с прыщами в подростковом возрасте. Дополнительные симптомы могут включать неспособность к обучению и поведенческие проблемы, такие как импульсивность. Интеллект обычно находится в нормальном диапазоне, хотя IQ в среднем на 10-15 баллов ниже, чем у братьев и сестер.

В прошлом было много неправильных представлений об этой болезни. Иногда его называли болезнью мужского пола, потому что считалось, что мужчины с этим синдромом чрезмерно агрессивны и им не хватает сочувствия. Недавние исследования показали, что это не так. Хотя люди с синдромом XYY имеют повышенный риск нарушения обучаемости и поведенческих проблем, они не слишком агрессивны и не подвержены повышенному риску какого-либо серьезного психического заболевания.

Поскольку больные мальчики подвержены более высокому риску нарушения обучаемости, им может быть полезна логопедия, репетиторство и общее понимание конкретных проблем, с которыми они сталкиваются. Хотя первые годы в школе могут быть более сложными для мальчиков с XYY-синдромом, они обычно ведут полноценную, здоровую и нормальную жизнь.

Влияние на психику и способности человека

При достижении ребенком 4-5 лет обязательно проводят оценку знаний и умений, психического и физического развития. Оценку интеллектуального развития и адаптации в социуме проводят ежегодно.

Интеллектуальные способности у девочек с синдромом Шерешевского-Тернера не снижены, но повышена эмоциональная неустойчивость. Требуется психологическая поддержка, ведь многие страдают из-за низкого роста и половой недоразвитости.

Обучаются такие люди благодаря усидчивости, но приходится бороться с плохой концентрацией внимания и недостатком логического мышления

Для девочек с моносомией Х характера аккуратность, внимание к мелочам в быту, упрямство и приподнятое настроение

Половые хромосомы: Х-хромосома

У человека 22 пары аутосомных хромосом и одна пара половых хромосом. Вместе они образуют кариотип, полный набор хромосом. У женщин есть две Х-хромосомы, а у мужчин – Х- и Y- хромосомы . С.

Половые хромосомы содержат гены, определяющие пол потомства. Женские гаметы содержат только хромосому X, а мужские гаметы имеют хромосому X или Y. Это означает, что сперматозоид, содержащий хромосому X или Y, может попасть в яйцеклетку женщины. девушка. Если же яйцеклетка оплодотворена спермой с Y-хромосомой – пара будет ожидать мальчика.

Во время оплодотворения гаметы соединяются случайным образом, и вероятность родить крестьянина такая же, как и у девочки. Хромосома Y играет ключевую роль в наследовании пола. Именно здесь обнаруживаются гены, определяющие пол. Самый важный ген – SRY, влияющий на развитие первичных половых признаков. Если клетки эмбриона содержат Y-хромосому, несущую ген SRY, гонады разовьются в ядра. В противном случае они превратятся в яичники.

Набор хромосом

Общее число хромосом, их особенности — характерный признак вида. У мухи-дрозофилы их количество — 8, у приматов — 48, у человека — 46. Это число является постоянным для клеток организмов, которые относятся к одному виду. Для всех эукариотов существует понятие «диплоидные хромосомы». Это полный набор, или 2n, в отличие от гаплоидного — половинного количества (n).

Хромосомы в составе одной пары гомологичны, одинаковы по форме, строению, местоположению центромер и других элементов. Гомологи имеют свои характерные особенности, которые их отличают от других хромосом в наборе. Окрашивание основными красителями позволяет рассмотреть, изучить отличительные черты каждой пары. Диплоидный набор хромосом присутствует в соматических клетках, гаплоидный же — в половых (так называемых гаметах). У млекопитающих и других живых организмов с гетерогаметным мужским полом формируются два вида половых хромосом: Х-хромосома и Y. Самцы обладают набором XY, самки — XX.

У-хромосома и наследственные заболевания

Как отмечалось ранее, мужская хромосома отличается от Х-хромосомы как размерами (она меньше), так и формой (имеет вид крючка). Также для нее специфичен и набор генов. Так, мутация одного из генов У-хромосомы фенотипически проявляется появлением пучка жестких волос на мочке уха. Этот признак характерен только для мужчин. Известно такое наследственное заболевание, вызванное хромосомной мутацией, как синдром Клайнфельтера. Больной мужчина имеет в кариотипе лишние женские или мужские хромосомы: ХХУ или ХХУУ.

Подводя итог, отметим, что у человека, как и у других млекопитающих, пол будущего организма определяется в момент оплодотворения, вследствие определенной комбинации в зиготе половых Х- и У-хромосом.

Проект «CRISPR-Cas9» и один этический вопрос

Данная технология была создана с целью редактирования генома. Сделать это можно, удаляя, добавляя и изменяя части генома. Эта система состоит из двух молекул, которые вызывают мутации в ДНК. Одна из молекул – Cas9 – призвана работать ножницами, а другая – гРНК – направляет «ножницы» в то место, где необходимо разрезать ДНК.

Применять ее планируется для лечения генетических нарушений в геноме человека, а также для модификации сельскохозяйственных культур и пород. Например, можно излечить раковых больных, людей с наследственными заболеваниями, а также улучшить полезные свойства растений и животных, используемых для получения пищи и иного сырья.

Также одной из целью является редактирование генома насекомых-переносчиков заболеваний, например, малярии, удалив всего один ген. С помощью этой технологии возможно сделать так, чтобы комары больше не смогли нести в себе патогенный микроорганизм и заражать людей. Еще одна идея – модифицировать геном свиней так, чтобы их органы подходили как донорские для трансплантации.

Это важно

Однако сразу назревает вопрос: насколько этично применять редактирование генома к человеческому организму? Ведь возможны ошибки, которые присущи как самой технологии, так и ее выполнению, которые отразятся на пациенте. Если редактируется геном эмбриона человека, то ошибка может стать фатальной. Однако это еще не повод отказываться от развития данной технологии, которая в будущем способна решить многие вопросы, касающиеся здоровья и качества жизни.

Синдром ломкой Х-хромосомы

Иногда яйцеклетка или сперматозоид несут дополнительную хромосому, или гены, расположенные на хромосомах, мутируют. Это приводит ко всем видам хромосомных аберраций.

Примером может служить  синдром ломкой Х-хромосомы  , генетическое заболевание, которое проявляется в основном умственной отсталостью. Дети с синдромом ломкой Х-хромосомы также имеют отличительную внешность. Для них характерны:

  • вытянутое лицо,
  • выпуклый лоб,
  • большая окружность черепа,
  • торчащие уши,
  • выступающая нижняя челюсть,
  • плоскостопие ,
  • сколиоз
  • макроорхизм (большие яички) у мальчиков

Другие симптомы болезни включают:

  • снижение мышечного тонуса,
  • нарушение зрительного контакта,
  • аутоагрессия и другие симптомы, которые могут указывать на  СДВГ ,
  • чрезмерная подвижность в суставах.

Синдром ломкой Х-хромосомы часто связан с другими заболеваниями, такими как эпилепсия, кислотный рефлюкс, хронический синусит и проблемы с ушами, а также проблемы с сердцем. Заболевание чаще встречается у мальчиков. Бывает один раз на 1500 рождений. Страдает одна из 5000 девочек.

Х-хроматин в соматических клетках

    М. Вагг и Е. Bertram (1949), исследуя нейроны самок кошек, впервые обнаружили специфичный для женского пола хроматин, присущий всем млекопитающим, в том числе и человеку. Этот хроматин имеет вид глыбок величиной около 1 мкм и красится основными ядерными красителями более интенсивно, чем другой хроматин ядра. Впоследствии эти образования получили название телец Барра. Обычно они располагаются на внутренней поверхности оболочки ядра, имеют треугольную, чечевицеобразную, трапециевидную форму, иногда в виде утолщения ядерной оболочки или зубца. 

    В настоящее время выяснено происхождение телец Барра. Установлено, что в соматических клетках женских особей только одна из двух Х-хромосом находится в активном состоянии; вторая генетически неактивна, подвергается спирализации, переходит в гетерохроматизированное состояние и может быть выявлена в виде Х-хроматина. У мужских особей имеется только одна Х-хромосома, которая находится в генетически активном состоянии. Поэтому теоретически Х-хроматин у них не должен выявляться. 

    У человека тельца Барра легче всего обнаружить в соскобе эпителия слизистой оболочки ротовой полости. У женщин число клеток с Х-хроматином составляет 20—80 %, у мужчин — 0—4 %. 

Признаки и симптомы XYY-синдрома

Клинические признаки XYY-синдрома часто неуловимы и не обязательно предполагают серьезное хромосомное расстройство. Соответственно, мужчинам с этим условием часто либо не диагностируют синдром, либо диагностируют неправильную патологию.

Наиболее распространенной физическим симптомом является увеличение роста, которое обычно проявляется после 5 или 6 лет и приводит к росту в среднем на около 6 футов и 3 дюйма в зрелом возрасте (см. фото выше).

У некоторых людей с XYY-синдромом также развиваются тяжелые кистозные прыщи в подростковом возрасте. Рождаемость и половое развитие нормальны. Помимо возможности увеличения роста, большинство пострадавших людей обычно имеют нормальный внешний вид (фенотип).

Мальчики с синдромом Джейкобса обычно имеют нормальный интеллект, хотя в среднем IQ на 10–15 баллов ниже, чем у его братьев и сестер. У пострадавших мальчиков могут наблюдаться небольшие задержки в достижении основных этапов развития. Проблемы с обучением отмечались в 50% случаев, чаще всего с задержками речи и языковыми проблемами. Проблемы с чтением являются общими из-за повышенной частоты возникновения дислексии.

В некоторых случаях у затронутых людей развиваются поведенческие проблемы, такие как взрывной характер, гиперактивность, импульсивность, вызывающие действия или, в некоторых случаях, антиобщественное поведение.

Существует более высокий уровень дефицита внимания и гиперактивности и меньший повышенный риск развития расстройств аутистического спектра.

Альтернативный подход

Конечно, X и Y – хромосомы, исследование которых в принципе стало доступно человечеству совсем недавно, поэтому преимущественно ученые располагают только теоретическими выкладками, не имея подтвержденных практическими наблюдениями данных, что всегда связано с небольшой вероятностью ошибки и разночтений. Уже сейчас некоторые убеждены, что озвученное выше мнение некорректное.

Специализированные исследования проводились в институте Уайтхеда. Ученые, исследуя мужской набор хромосом, пришли к выводу, что генетический распад полностью прекратился. Это был лишь эволюционный этап, связанный с особенностями человеческого организма, и в настоящее время достигнуто стабильное состояние, которое таким и сохранится не менее чем на десять миллионов лет.

Предпосылки хромосомной теории наследственности

Американский исследователь Уолтер Саттон выяснил, сколько хромосом содержится в клеточном ядре. Ученый считал эти структуры носителями единиц наследственности, признаков организма. Саттон обнаружил, что хромосомы состоят из генов, с помощью которых потомкам от родителей передаются свойства и функции. Генетик в своих публикациях дал описания хромосомных пар, их движения в процессе деления клеточного ядра.

Независимо от американского коллеги, работы в том же направлении вел Теодор Бовери. Оба исследователя в своих трудах изучали вопросы передачи наследственных признаков, сформулировали основные положения о роли хромосом (1902-1903). Дальнейшая разработка теории Бовери-Саттона происходила в лаборатории нобелевского лауреата Томаса Моргана. Выдающийся американский биолог и его помощники установили ряд закономерностей размещения генов в хромосоме, разработали цитологическую базу, объясняющую механизм законов Грегора Менделя — отца-основателя генетики.

Генетическая информация в У-хромосоме

Исследованиями ученых-генетиков, в частности Т-Х. Моргана, было установлено, что у человека и млекопитающих генный состав Х- и У-хромосом неодинаков. Мужские хромосомы у человека не имеют некоторых аллелей, присутствующих в Х-хромосоме. Однако в их генофонде представлен ген SRY, контролирующий сперматогенез, приводящий к формированию мужского пола. Наследственные нарушения этого гена в эмбрионе приводит к развитию генетического заболевания – синдрома Суайра. В результате женская особь, развивающаяся из такого эмбриона, содержит в кариотипе ХУ половую пару или только участок У-хромосомы, содержащий генный локус. Он активизирует развитие гонад. У больных женщин не дифференцируются вторичные половые признаки, и они бесплодны.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз, Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20—40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные — Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 — начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30—40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Что такое Autosomes

Несексуальные хромосомы, которые определяют черту организма, идентифицированы как аутосомы. Они также известны как соматические хромосомы, так как они определяют соматические признаки человека. Геном в основном состоит из аутосом. Например, человеческое тело содержит 46 хромосом в своем геноме, и 44 хромосомы из них являются аутосомами. Аутосомы существуют в виде гомологичных пар, и в геноме человека можно идентифицировать 22 аутосомные пары.

Обе аутосомные хромосомы содержат одинаковые гены, которые расположены в одинаковом порядке. Но пара аутосомных хромосом отличается от других пар аутосомных хромосом в пределах одного и того же генома. Эти пары обозначены от 1 до 22, в соответствии с размерами пар оснований, содержащихся в каждой хромосоме.

Автосомы также участвуют в определении пола. Ген SOX9 является аутосомным геном в хромосоме 17. Он активирует функцию фактора TDF, который кодируется Y-хромосомой. Фактор TDF имеет решающее значение в определении мужского пола. Следовательно, мутация SOX9 вызывает развитие Y-хромосомы, в результате чего появляется самка.

Аутосомно-генетические расстройства возникают либо из-за отсутствия дизъюнкции родительских хромосом (Aneuploidy) во время гаметогенеза, либо из-за менделевского наследования вредных аллелей. Примером анеуплоидии является синдром Дауна, у которого три копии хромосомы 21 на клетку. Расстройства с менделевским наследованием могут быть либо доминантными, либо рецессивными (например, серповидноклеточная анемия).

Рисунок 1: Кариотип человека мужского пола

Хромосомы человека

Нормальный кариотип человека представлен 46 хромосомами. Это 22 пары аутосом и одна пара половых хромосом (XY в мужском кариотипе и XX — в женском). В приведённой ниже таблице показано число генов и оснований в хромосомах человека.

Изображение 46 (23 пар) хромосом женского кариотипа человека, полученное с помощью FISH с флуоресцентно-мечеными Alu-повторами. Alu-повторы показаны зелёным цветом, ДНК — красным. У человека самая длинная 1-я хромосома примерно в 5 раз длиннее самой короткой 21-й хромосомы.

Хромосома Всего оснований Количество генов Количество белок-кодирующих генов
249250621 3511 2076
243199373 2368 1329
198022430 1926 1077
191154276 1444 767
180915260 1633 896
171115067 2057 1051
159138663 1882 979
146364022 1315 702
141213431 1534 823
135534747 1391 774
135006516 2168 1914
133851895 1714 1068
115169878 720 331
107349540 1532 862
102531392 1249 615
90354753 1326 883
81195210 1773 1209
78077248 557 289
59128983 2066 1492
63025520 891 561
48129895 450 246
51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76

Симптомы андрогенной недостаточности при синдроме Клайнфельтера

Андрогенная недостаточность при синдроме Клайнфельтера связана с постепенной атрофией яичек, что приводит к снижению синтеза тестостерона. Степень недостаточности андрогенов резко варьирует.

В первую очередь обращают на себя внимание внешние признаки гипогонадизма:

  • скудная растительность на лице или же полное ее отсутствие;
  • рост волос на лобке по женскому типу;
  • волосы на груди и других частях тела отсутствуют;
  • маленький объем яичек (2–4 мл) и их плотная консистенция (патогномоничный признак).

Поскольку дегенерация половых желез, как правило, развивается в постпубертатный период, у большинства пациентов размеры мужских половых органов, за исключением яичек, соответствуют возрастным нормам.

Пациенты могут жаловаться на ослабление либидо и снижение потенции. У многих мужчин с синдромом Клайнфельтера половое влечение вовсе не возникает, а некоторые — напротив, заводят семью и живут нормальной половой жизнью. Наиболее постоянный признак патологии — бесплодие, именно оно чаще всего становится причиной обращения таких пациентов к врачу. У 10 % мужчин с азооспемией обнаруживают синдром Клайнфельтера.

Всем пациентам с нарушениями сперматогенеза необходимо определять кариотип для исключения или подтверждения диагноза синдрома Клайнфельтера.

Недостаток андрогенов приводит к развитию остеопороза, анемии и слабости скелетной мускулатуры. У трети больных можно наблюдать варикозное расширение вен голеней.

Андрогены влияют на обмен веществ, поэтому больные с синдромом Клайнфельтера склонны к ожирению, нарушению толерантности к глюкозе и сахарному диабету второго типа.

Доказана предрасположенность таких пациентов к аутоиммунным заболеваниям (ревматоидный артрит, системная красная волчанка, аутоиммунные заболевания щитовидной железы и другие).

Литература

  • Захаров А. Ф., Бенюш В. А., Кулешов Н. П., Барановская Л. И.  Хромосомы человека. Атлас. — М.: Медицина, 1982. — 263 с.
  • Инге-Вечтомов С. Г.  Генетика с основами селекции: учебник для студентов высших учебных заведений. — СПб.: Изд-во Н-Л, 2010. — 720 с. — ISBN 978-5-94869-105-3. — С. 193—194.
  • Коряков Д. Е., Жимулев И. Ф.  Хромосомы. Структура и функции. — Новосибирск: Изд-во СО РАН, 2009. — 258 с. — ISBN 978-5-7692-1045-7.
  • Лима-де-Фариа А.  Похвала «глупости» хромосомы. — М.: БИНОМ. Лаборатория знаний, 2012. — 312 с. — ISBN 978-5-9963-0148-5.
  • Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — 808 с. — ISBN 978-5-4344-0112-8. — С. 325—359.

Нарушения в наборах хромосом

Иногда количество пар не соответствует стандарту. Проблему во внутриутробном развитии может заметить только генетик, если будущая мама добровольно пройдет исследование. Если количество нарушено, то выделяют такие заболевания:

  1. Синдром Клайнфельтера.
  2. Болезнь Дауна.
  3. Синдром Шерешевского-Тернера.

Консервативных методов для восполнения недостающего генетического ряда не существует на сегодняшний день. То есть подобный диагноз считается неизлечимым. Если проблема была диагностирована во время беременности, лучше всего ее прервать. В противном случае появляется больной ребенок с возможными внешними уродствами.

Болезнь Дауна

Через некоторое время болезнь

При синдроме Дауна к 21 паре прикрепляется еще одна. То есть, общее количество составляет не 46, а 47 хромосом. Патология формируется спонтанно, а ее причиной может быть сахарный диабет, пожилой возраст родителей, повышенная доза радиации, наличие некоторых хронических заболеваний.

Внешне такой ребенок отличается от здоровых сверстников. У него узкий и широкий лоб, объемный язык, большие уши, сразу бросается в глаза умственная отсталость. Также у пациента диагностируются другие проблемы со здоровьем, которые затрагивают многие внутренние системы и органы.

По большому счету хромосомный ряд будущего малыша сильно зависит от генома его матери. Именно поэтому перед началом планирования беременности необходимо пройти полноценное клиническое обследование. Оно позволит определить скрытые проблемы. Если врачи не обнаружат противопоказаний, можно думать о зачатии ребенка.

Синдром Патау

При этом нарушении наблюдается трисомия в тринадцатой паре структурных единиц. Такое заболевание встречается намного реже, чем синдром Дауна. Оно возникает, если присоединяется лишняя структурная единица или нарушается структура хромосом и их перераспределение.

Существует три основных симптома, по которым диагностируют данную патологию:

  1. Уменьшенные размеры глаз или микрофтальм.
  2. Увеличенное количество пальцев (полидактилия).
  3. Расщелина неба и губы.

При таком заболевании около 70% младенцев вскоре после рождения (до трех лет) умирают. Часто у детей с синдромом Патау диагностируют пороки сердца, а также головного мозга, проблемы со многими внутренними органами.

Синдром Эдвардса

Эта патология характеризуется наличием трех хромосом

Чтобы не допустить развития патологии, рекомендовано всем родителям, которые решают зачать ребенка после 35 лет, пройти специальные обследования. Также большая вероятность развития заболеваний у тех, чьи родители имели проблемы со щитовидной железой. Гуманитарии кто это читайте у нас на сайте

У-хроматин

     Т. Caspersson с сотр. (1969) обнаружили яркую флюоресценцию в дистальной части длинных плеч мужских хромосом У после окраски производными акридина (акрихином или атебрином, акрихин-ипритом). Позднее P. Pearson с сотр. (1970) открыли в интерфазных ядрах, в период покоя клетки, светящиеся в ультрафиолетовых лучах тельца размерами 0,3—0,7 мкм после окраски атебрином. Эти тельца оказались У-хроматином, который выявляется только у человека и гориллы. У-хроматин имеет округлую или серповидную форму, четкие контуры, располагается под оболочкой ядра, но может быть и в кариоплазме. 

    По данным различных авторов, У-хроматин у мужчин встречается в 20—99 % всех клеток различных тканей и органов, выявляется он также в лейкоцитах. 

Психологические особенности

Коэффициент интеллекта у больных с классическим синдромом Клайнфельтера варьирует от значений ниже среднего до показателей, значительно превышающих средний уровень. Однако во всех случаях отмечается диспропорция между общим уровнем интеллекта и вербальными способностями, так что нередко пациенты с достаточно высоким IQ испытывают трудности при восприятии больших объемов материала на слух, а также при построении фраз, содержащих сложные грамматические конструкции. Такие особенности причиняют пациентам много неприятностей в период обучения и нередко продолжают сказываться на профессиональной деятельности.

Данные о психологических особенностях больных с синдромом Клайнфельтера достаточно противоречивы, однако большинство специалистов оценивают пациентов как скромных, робких людей с несколько заниженной самооценкой и повышенной чувствительностью. Есть данные, свидетельствующие о склонности пациентов с синдромом Клайнфельтера к гомосексуализму, алкоголизму и наркомании. Сложно сказать, вызваны ли особенности психики у таких больных непосредственным влиянием хромосомной аномалии, или же это реакция на проблемы в сексуальной сфере.

В отношении разных цитогенетических вариантов синдрома Клайнфельтера справедливо правило, что с увеличением количества дополнительных Х-хромосом увеличивается количество и выраженность патологических симптомов.

Необычные типы хромосом

Микро- и макрохромосомы в метафазной пластинке курицы

B-хромосомы в метафазной пластинке сибирской косули Capreolus pygargus

Моноцентрическая (а) и голоцентрическая (b) хромосомы

Политенные хромосомы в клетке слюнной железы у представителя рода Chironimus из семейства комары-звонцы (Chironomidae)

Хромосома типа ламповых щеток из ядра ооцита тритона

Микрохромосомы

У многих птиц и рептилий хромосомы в кариотипе образуют две чёткие группы: макрохромосомы и микрохромосомы. У некоторых видов микрохромосомы настолько мелкие и их так много, что невозможно отличить одну от другой. Микрохромосомы являются короткими по длине, но обогащёнными генами хромосомами. Например, кариотип курицы содержит 39 пар хромосом, 6 из которых относятся к макрохромосомам, а 33 — к минихромосомам. Макрохромосомы содержат две трети геномной ДНК, но только 25 % генов, в то время как микрохромосомы содержат оставшуюся треть геномной ДНК и 75 % генов. Таким образом, плотность генов в минихромосомах курицы в шесть раз выше, чем в макрохромосомах.

B-хромосомы

B-хромосомы — это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений, описаны у грибов, насекомых и животных. Некоторые В-хромосомы содержат гены, часто это гены рРНК, однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования.

Голоцентрические хромосомы

Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены.

Голоцентрические хромосомы встречаются у протист, растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans.

Регуляция пола

В генетике человека она осуществляется двумя правилами: первое определяет зависимость развития зачаточных половых желез от секреции тестостерона и гормона MIS. Второе правило указывает на исключительную роль, которую играет У-хромосома. Мужской пол и все соответствующие ему анатомические и физиологические признаки развиваются под воздействием генов, находящихся в У-хромосоме. Взаимосвязь и зависимость обоих правил в генетике человека называется принципом роста: у эмбриона, являющегося бисексуальным (то есть имеющим зачатки женских желез – мюллерова протока и мужских гонад – вольфова канала) дифференцировка эмбриональной половой железы зависит от наличия или отсутствия в кариотипе У-хромосомы.

Что такое хромосомы?

Хромосомой называют структурные элементы клеточного ядра, которые содержат ДНК. В данном веществе заключена вся наследственная информация организма. Непосредственно в хромосомах располагаются гены в линейном порядке. Каждая клетка человеческого организма содержит 46 хромосом, которые разделены на 23 пары. 22 из них – аутосомы, а последняя пара состоит из Х- или Y-хромосомы, которые определяют пол человека.

Где находятся хромосомы и сколько их всего в организме, ученые узнали в 1956 году. С того времени установлено, что в организме каждого человека хромосомы находятся в ядрах и это соматические или половые хромосомы. Последние определяют пол будущего ребенка при зачатии. Женская яйцеклетка содержит две Х-хромосомы, а сперматозоид – одну Х и одну Y. Если передается Х-хромосома, родится девочка, а если Y – мальчик.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector